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We consider classically forbidden events which control chemically and spectroscopically important processes.
We focus on dynamical tunneling, which is tunneling in the absence of potential barriers, and tunneling
between two Born-Oppenheimer potential energy surfaces. The former drives intramolecular vibrational
relaxation (IVR) in molecules; the latter controls much of photochemistry, spectroscopy, and energy transfer.

I. Introduction

Semiclassical concepts and methods have been very useful
in spectroscopy, where convenience and intuitive power are
compelling reasons to use them.1-3 One of the lessons of the
semiclassical methods is that, very often, spectral features are
due to essentially classical motion on potential energy surfaces,
possibly with interference between alternate classical paths.

It is a truism that semiclassical concepts and methods frame
the discussion of tunneling events too, although here one’s
ordinary classical intuition may not always be a reliable guide
to what might happen. This paper focuses on novel tunneling
events which sometimes tax our intuition and yet finally yield,
very usefully, to a semiclassical analysis.

The concept of quantum tunneling, like chemical bonding,
is almost second nature, and yet capable of surprising us with
new facets. We recognize tunneling when we see it; invoke it
when needed, and often presume to understand it. Yet, like
chemical bonding, it has its subtleties, its difficulties. The subject
still stirs interest and debate.

Why is the tunneling concept needed at all? What good is it
really, when we all know that quantum mechanics is the correct
theory and tunneling need not be discussed except in relation
to a wrong (i.e., classical) description of the world. The danger
of this view is illustrated by the difficulty of imagining say an
A + BC f AB + C chemical reaction as a highly correlated
wavefunction evolving simultaneously in six dimensions. We
canhowever imagine a reaction mechanism involving a specific
atomic choreography. The “divide and conquer” nature of
classical mechanics, through the agent of the classical trajectory,
allows us a powerful conceptualization and visualization tool.
Moreover, the computer finds classical mechanics exceedingly
easy to do, one trajectory at a time, in situations where quantum
calculations are entirely out of the question for the foreseeable
future. In order to use the classical visualization and the
numerical trajectories we must know the relation of classical
mechanics to quantum reality. One of the most important
corrections to classical mechanics is tunneling; it is thus it is
important to understand it.

In this paper we focus on two types of tunneling: (a)
dynamical tunneling,4-7 (as opposed to barrier tunneling) and
(b) tunneling between two Born-Oppenheimer potential energy
surfaces. Loosely, dynamical tunneling involves a quantum flow
to places where classical dynamics does not go, when potential
energy barriers are not to blame. Dynamical tunneling is more
subtle than barrier tunneling because the barrier is not obvious

from energy constraints.37 For this reason dynamical tunneling
often goes unnoticed or unappreciated.

Surface-to-surface Born-Oppenheimer tunneling involves
getting from one adiabatic surface to another under circum-
stances where drastic changes in position or momentum are
required of one or some linear combination of coordinates. There
are many new effects and subtleties in this regime, some of
which we hope to convey.

In special circumstances, extended (e.g., to complex time)
classical mechanics can describe some tunneling events, such
as barrier penetration in one dimension, or in more dimensions
for separable motion. The Wentzel-Kramers-Brillouin (WKB)
method for tunneling is a familiar example. However, the naked
truth is that these methods are rather limited. For example, if
the barrier is not very high, the WKB method is badly in error
for all energies, both below and above the barrier! (Above the
barrier we might want to compute the probability of reflection,
another classically forbidden event.) The not-very-high barrier
is a very common problem occurring in many dynamical
tunneling situations. (These might be better termed “dynamical
classically forbidden reflection”, but dynamical tunneling is
easier.) We shall discuss what to do in such situations below.

II. Dynamical Tunneling

A. Tunneling of an Asymmetric Top. A dramatic example
involving tunneling of an asymmetric top (and more complicated
cases involving rotation-vibration coupling) has been empha-
sized by Harter.8 A symmetric top has the body fixedz-axis
projection of the total angular momentumK as a constant of
the motion. The eigenstates of nonvanishingK are doubly
degenerate;+K and-K have the same energy. Introducing an
asymmetry (so that the moments of inertiaI1 * I2 * I3) breaks
this degeneracy. The splitting is typically quite small and can
be extremely small for large angular momentumJ. The spectrum
of an asymmetric rigid rotor as a function of the asymmetry
(Figure 1) reveals the splittings as they get larger toward
maximum asymmetry (I2 ) 0.4 in this example).

Harter defines a “rotational energy” surface to lie at a radial
distance from an originr ) γE(J′x, J′y, J′z) proportional to the
rotational energyE(J′x, J′y, J′z), depending on the body fixed
components of angular momentum for a given|JB|, whereγ is
the proportionality constant. The rotational energy surface is
illustrated in Figure 1 forI1 ) 0.2, I2 ) 0.4, andI3 ) 0.6.
Classical dynamics proceeds along the contours on the RE
surface, which are intersections ofE ) fixed spheres with the
|JB| ) constant RE surface.
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The bent ABC triatomic molecule shown in Figure 2, treated
as a rigid asymmetric quantum top, can be initially put in a
wavepacket state of definiteJ with the atom A above, as
illustrated. This corresponds to rotation about the low moment
of inertia body fixed axis. Classically, atom A remains above
forever, but quantum mechanically a tunneling takes place which
switches A and C without changingJ. C appears up on top
alternately with A, with a period given by the splitting. This
corresponds to tunneling to the equivalent rotational energy
contour on the backside of the RE surface (there are three
reflection planes through the middle of the figure). Harter
demonstrates that the tunneling splitting can often be accurately
determined by a WKB tunnel integral, keeping|JB| fixed.

This is the first but not the last encounter we shall have with
tunneling across a separatrix. The separatrix is here defined by
the pure unstable axis motion of an asymmetric top, and its
characteristic hyperbolic zone is visible in Figure 1.

B. Above-Barrier Reflection. Our second encounter with a
separatrix is a little different. The seemingly simple problem
of reflection above a barrier generates a separatrix in phase
space and provides a powerful paradigm for dynamical tunnel-
ing. We review the case of a large barrier first, and then consider
what happens for a small barrier. This discussion follows that
in ref 9.

1. Large Barrier. Consider the reflection coefficient of a
particle of energyE incident from the left on an potential barrier.
The usual semiclassical reflection coefficient is

wherepo is the classical value for momentum at the center of
the potential,x(p) is the classical solution for the position in
terms of momentum, andI stands for the imaginary part. The
barrier penetration formula is more familiar, which is of the
form eq 1 with the exchange of the roles of position and
momentum: the barrier tunneling probability at energyE is

where (xo are the classical turning points andp(x) )
x2m(E-V(x)); m is the mass andV(x) is the potential energy
(see also Figure 3).

2. Small Barrier.It is well-known that the WKB formulas
break down for energies near the top of the barrier. It follows
that they fail catastrophically everywhere if the barrier is too
small.

Fortunately, we can use perturbation theory if the bump is
small. In the Born approximation, we start with a plane wave
basis representing free particle motion; the effect of the potential
is to induce transitions between right and left traveling plane
waves: E ) e(i/ppx where p ) x2mE. Choosing states
normalized to unit flux, we obtain the reflection coefficient

which is the Born scattering result.10 This formula is valid under
certain “smallness” conditions of the potential: we need

Figure 1. The rotational energy surface (above) and the energy
correlation diagram as a function of asymmetry between prolate and
oblate symmetric tops. Note the smallest splitting between the tunneling
doublets occurs near the symmetric top limits and between states which
correspond to distant level curves on the rotational energy (RE) surface.
For example, states in the gray area tunnel across the separatrix rather
easily, giving larger splittings.

Figure 2. The bent ABC triatomic molecule shown here, treated as a
rigid asymmetric top, can be initially put in a wave packet state of
definiteJ with the atom A on top. Classically atom A remains on top
forever, but quantum mechanically a tunneling takes place which
switches A and C without changingJ.

Figure 3. Phase space diagram illustrating the classically forbidden
“dynamical tunneling” corresponding to reflection above a barrier.

R ) exp(-2/pI∫-po

po x(p′)dp′) (1)

T ) exp(-2/pI∫-xo

xo p(x′)dx′) (2)

R ) m2

p2p2|∫-∞

∞
V(x)e2i/ppx dx|2 (3)
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whereV ) pp/m is the classical velocity of the particle anda is
the width of the potential, which essentially requires the
scattering potential to be weak compared to the kinetic energy
of the incoming particle.10

3. A Semiclassical Distorted WaVe Born Approximation. It
can easily happen that the potential barrier is too high to be
treated perturbatively, yet the action∫px(p′)dp′ is too small
compared top for semiclassics to be reasonably applied. For
such stronger potentials, WKB wave functions may play the
role of the distorted wave basis: they areexactsolutions to a
well behaved, Hermitian HamiltonianHWKB,9 and we need
merely take the difference potentialH - HWKB as a perturbation.
The WKB wavefunctions for a potentialV(x) may be written
as linear combinations of wavefunctions of the form

where +(-) represents the right-(left-)going wave. As they
satisfy Schro¨dinger’s equation to first order inp, we may expect
that any “quantum” behavior shows upO(p2) (or higher). Indeed
it is easily demonstrated that

Writing the momentum derivatives in terms of potential
derivatives and defining an effective potential for the WKB
states as (primes represent derivatives with respect tox here)

we have

Thus the WKB wavefunction exactly solves a quantum me-
chanical Hamiltonian problem with real potential which is
smooth for energies above any potential maximum. We may
think of the difference between the effective and exact potentials
Vtun(x, E) ) Veff(x, E) - V(x) as a perturbation which “turns
off” quantum reflection. Schematically, we write

whereVtun is of orderp2 and induces the correct tunneling, and
whereHWKB is “quantum mechanics without the tunneling”. The
dream of such a separation is realized here in this special
example, and although we do not know how to make this
separation work smoothly in general, it is a paradigm of a very
important problem: dynamical tunneling.

The distorted wave Born approximation for the perturbation
-Vtun ) V - Veff between theψ+ andψ- is

In ref 9, numerical trials showed that as we increase the size
of the bump there is a gap in which the Born approximation
for R is unsatisfactory and WKB has yet to become accurate.
However, the WKB-distorted wave Born approximation works
extremely well in this region. The lesson to be taken here is
that if we can construct the primitive WKB solution, which does
not “know” about above barrier reflection, we can obtain the
reflection accurately by perturbation theory. Above barrier
reflection is certainly a type of dynamical tunneling: the flow
of quantum amplitude into classical forbidden domains where
there is no potential energy barrier.11 Above barrier reflection
is also essentially diffraction, although that term is sometimes
applied to classically allowed processes.

A classical phase space picture, Figure 3, illustrates contours
for a barrier. The quantum reflection process is indicated by
the dashed line from the top curve to the bottom. The Born
approximation uses states attached to thep ) constant lines,
and the distorted wave Born approximation uses the distorted
E ) constant basis.

4. Numerical Results. In Figure 4 we present the results of
the WKB-Born result, with the exact quantum reflection
coefficient (see ref 10 for example), the semiclassical result,
and the Born result (where applicable) for a sech2 barrierV(x)
) Vosech2(Rx).

C. More about Barriers. One would think that everything
about tunneling and reflection in one dimension was familiar
by now. However, it was not until very recently that an old
controversy was resolved concerning the relationship of above-
barrier classical trajectories and below-barrier tunneling.12

The seemingly reasonable argument that above-barrier tra-
jectories contain the information about tunneling goes as follows.
Consider a barrier peaking atx ) 0, and construct the
semiclassical time Green’s functionGsc(x, x′, t) wherex andx′
straddle the barrier. There is always one trajectory going from
x to x′ in time t: at short times, a nearly free particle with high
energy clearly suffices, and at longer times any time delay
necessary is possible by “hanging up” near the barrier top with
energy just above-barrier. ThusGsc(x, x′, t) is well defined. Now
we Fourier transformGsc(x, x′, t) into the energy domain,
choosing anE below the barrier:

where the question mark indicates the choice to do the integral
exactly or by stationary phase. If the latter, then no stationary
phase point is found for real time, and one must be sought in
the complex time domain.13 The search is successful and leads
to the usual WKB under-the-barrier complex tunneling path.

Remembering that stationary phase is approximate, why not
just do the integral in eq 11 exactly? Then we should get a
better result, and furthermore the input to the integrand comes
entirely from trajectories going under the barrier. In support of
this idea, we note it is exact for an inverted harmonic oscillator
barrier, where the semiclassicalGsc(x, x′, t) is exact and exact
Fourier transform must give the correct result.

However, the idea is wrong in principle! We can schemati-
cally indicate the problem from an analytical-complex plane
viewpoint and from a phase space viewpoint. Figure 5 shows
the real time path (path A) of an integral in the complex time
plane. This we suppose represents the integration path in eq
11. In search of a stationary phase (saddle) point, we distort

|V(x)a
pν | , 1 (4)

ψWKB
( (x) ) 1

xp(x)
exp((i/p∫x

p(x′)dx′) (5)

(- p2

2m
d2

dx2
+ V(x) - E)ψWKB

( (x) )

p2(-3p′(x)2

8mp(x)2
+

p′′(x)

4mp(x))ψWKB
( (x) (6)

Veff(x, E) ) V(x) - p2[ 5
32m( V′(x)

E - V(x))2

+
V′′(x)

8m(E - V(x))]
≡ V(x) - Vtun (7)

(- p2

2m
d2

dx2
+ Veff(x, E) - E)ψWKB

( (x) ≡

(HWKB - E)ψWKB
( ) 0 (8)

H ) HWKB + Vtun (9)

R ) m2

p2
|∫-∞

∞
(V(x) - Veff(x))

exp(2i/p∫x
p(x′)dx′)dx

p(x)
|2

(10)

G?(x, x′, E) ) ∫ e-iEt/p Gsc(x, x′, t) dt (11)
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the time contour above a branch cut in the complex plane, path
B. Picking up the saddle point and then returning to the real
time axison the upper sheetgets the trajectory to tunnel under
the barrier. Now comes the crucial point: the integral we just
did by stationary phase is not the original integral! For example
it wound up on a different sheet of the branch cut.If we want
to do an integral better than stationary phase, we should do
path B numerically, not path A. If we do this, the input
trajectories are under-the-barrier ones, and so from this view-
point we have seen it is not the over the barrier trajectories
which are responsible for tunneling.

Some further comments are in order. First, in the case of an
inverted harmonic oscillator, there is no branch cut, and so our
argument does not apply, allowing the over-the-barrier inter-
pretation. However we should note that the inverted oscillator
is unphysical at large distance from the barrier top. The branch
cut results from the potential flattening out at long range. A
second comment concerns another aspect that can mislead or
lull one into a false (but perhaps a useful!) sense of security.14

If x andx′ are close to the barrier, then (again schematically)

the saddle point starts to approach the branch point and the
values of the two integrals, paths A and B, are not so different.
This actually leads to a practical procedure, useful ifx andx′
are close in.14 However asx andx′ recede, the integral along
path A goes to 0.

It was demonstrated in ref 12 that if one includes tunneling
trajectories in the time domain, that is, ifGsc(x, x′, t) is
augmented by under-the-barrier trajectories, then numerical
Fourier transform ofGsc(x, x′, t) does work. It was shown that
such classically forbidden, under-the-barrier trajectories actually
make a larger contribution than the over-the-barrier, classically
allowed ones at long times. The under-the-barrier trajectories
give a contribution which is exponentially small but with weak
time dependence; the over-the-barrier trajectories are exponen-
tially depleted at long times and have a strong (exponentially
damped) time dependence. Figure 6 gives the relative contribu-
tions for a typical sech2(x) potential barrier. The dominance of
a classically forbidden process over a classically allowed one
cannot survive the theorist’s limitp f 0, since the tunneling
process will typically scale as exp(-c/p), wherec is a constant,
but experiments are done at finitep!

D. The Photoelectric Effect, Photoionization, etc.Having
treated what we claim is the paradigm of dynamical tunneling,
i.e., reflection above a barrier, we now turn to some physical
situations where it arises.

Consider a Morse oscillator initially in its ground state.
Suppose we apply weak monochromatic radiation, which is
resonant (in the quantum sense) with a high lying bound state
with hν . pω, whereω is the local frequency of the oscillator
near its minimum andν is the frequency of the radiation. This
process is classically forbidden: the frequency of the perturba-
tion is much too high to pump much energy in or out of the
oscillator. Essentially nothing happens classically, while quan-
tum mechanically we know a certain fraction of the amplitude
will be promoted to the excited state. The classically nonresonant
absorption is a classically forbidden process, and a fine example
of dynamical tunneling. This discussion applies to any non-
resonant single-photon process, such as photoionization of
Helium or the photoelectric effect. Indeed, the usual textbook
discussion of the photoelectric effect, an example of the need
for quantum mechanics, is a statement that the photoemission
process fails classically under the circumstances of the experi-
ment (weak, classically nonresonant light), yet is allowed
quantum mechanically.

It is interesting to assign a harmonic oscillator of angular
frequency 2πν to the field, as in quantum electrodynamics, and
treat it as a degree of freedom coupled to the Morse potential.
Suppose there are four quanta in the field mode, and zero in
the oscillator initially. This state is by design almost degenerate

Figure 4. Comparison of WKB, Born, and WKB-Born approxima-
tions for reflection above a barrier as a function of barrier heightVo

for the potentialV(x) ) Vo sech2(x) for E ) 1.9 andH ) p2/2 + V(x).
The exact and WKB-Born results are indistinguishable over this range.

Figure 5. (Top) Integration paths for the stationary phase evaluation
of the tunneling integral (path B) and the original integral (path A).
Path B ends up on a different sheet of the integrand, and is not the
original integral. (Bottom) As the pointsx andx′ approach the barrier,
in effect the saddle point comes out from the shadow of the branch cut
and the two paths give similar answers. The path going above the branch
cut is on the second physical sheet and corresponds to a different
position of the trajectory.

Figure 6. The above-barrier only, above-barrier+ below-barrier, and
exact Green’s function propagator for the sech2 potential barrier, from
ref 12.
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with three quanta in the field and four in the oscillator. Although
this implies the existence of a 4:1 resonance in the classical
phase space (see below), the resonance will generally not
directly affect a trajectory representing the initial oscillator and
in any case will be so narrow (for weak coupling) that it barely
excites the oscillator. The usual energy diagram, as in Figure
7, top left, can be augmented in two ways, in coordinate space
Figure 7, bottom left, and in phase space, Figure 7, right.

In Figure 7, bottom left, we sketch a schematic two
dimensional oscillator potential illustrating the low frequency
mostly x-direction (horizontal) motion of the Morse potential
and the much tighter high frequencyy-motion of the field
oscillator. Eigenstates corresponding to the initial and final state
as described above are sketched as well. These two motions do
not communicate classically, but quantum mechanically there
is a nonvanishing matrix element connecting them.

Figure 7, right, displays the phase space view of this, with
the convention that ay ) 0 (field oscillator) surface of section
is constructed, in whichx and px are plotted every time the
trajectory penetratesy ) 0 with py > 0. Resonance islands
appear corresponding to the 4:1 resonance and higher order
resonances. Now we can understand the relevance of the above-
barrier reflection problem to dynamical tunneling: the local
phase space structure near the islands is the same as the above-
barrier problem7,15-18 (see Figure 8). This means that we can
use perturbation theory or distorted wave perturbation theory
to determine the tunneling interaction between nearly degenerate
states with different actions, in this case (4,0) and (3,4), just as
we did for the barrier reflection problem.

E. Collisional Dynamical Tunneling. Many years ago
Miller19 noted that classically forbidden events appear in
semiclassical scattering theory (“classical S-matrix theory”) as
action changes of the target which fail to reach a full quantum
jump (action change ofh or greater), for all initial conditions.
Then, the “primitive” semiclassical cross section will be zero.
However Miller also gave uniform expressions which correctly
bootstrap the finite quantum transition amplitude from the failed
classical attempt. (This same failure would become classically
allowed if p were allowed to become much smaller). This is
one of the first clear examples of dynamical tunneling-something

that happens quantum mechanically but fails to happen classi-
cally, but with no potential barrier to blame.

A related example involves vibrational relaxation in neat O2,
as studied for example by Faltermeir et al.20,21A classical study
of the relaxation rate gives 0.0005 s-1, many orders of mag-
nitude slower than the experimental rate of 360 s-1. For all
practical purposes, the vibrational relaxation of an excited O2

molecule in cold, liquid O2 is classically forbidden, yet it pro-
ceeds slowly quantum mechanically. Under the conditions of
the experiment, the vibrational frequency of the O2 is ωvib )
1552 cm-1; however, typical environment frequencies are a very
off-resonant 50 cm-1. Dynamical tunneling is the agent of the
relaxation of neat O2.

III. Dynamical Tunneling and IVR

In a polyatomic system, before strong chaos sets in at higher
energy, phase space is densely filled with small resonance zones.
While a process known as Arno’ld diffusion can lead to classical
transport in phase space in many dimensions, this diffusion is
typically extremely slow. The situation is probably rather like
the neat O2 example just cited: classically the process is not
forbidden but the tunneling is much, much faster. Indeed we
explicitly proved this is the case in resolving the over-the-barrier
tunneling controversy in section II.C. Just as in the problem of
tunneling under a barrier when viewed in the time domain, we
expect a quantum tunneling process to dominate a classically
allowed one ifp is not too small, i.e., tunneling will dominate
Arno’ld diffusion.

Every point on a surface of section has the same classical
energy. If it should happen that two tori cutting through this
surface quantize in the Einstein-Brillouin-Keller (EBK) sense,
i.e., with actionsI given by

and also

then degeneracy of two eigenstates is predicted semiclassically.
However, quantum mechanics will find a way to connect the
two tori by tunneling. The true eigenstates will be mixtures of

Figure 7. (Top left) The usual energy representation of a one-photon,
multiquantum transition. (Bottom left) A coordinate space picture,
illustrating the potential, the wavefunctions of the field oscillator, the
Morse oscillator, and arrows indicating the qualitative classical motion
corresponding to the initial and final states. (Right) Poincare’ surface
of section for the field oscillator-Morse oscillator problem, showing
resonance zones in phase space corresponding to the 4:1 resonance.
However, even in the presence of the resonance and the coupling, the
initial torus representing energy mostly in the field oscillator is almost
undistorted from what it would be without the coupling to the field.
Motion is confined to the invariant surfaces seen here, corresponding
to the classical “no-go” for the transition.

Figure 8. A Poincarésurface of section for a typical system with
narrow resonance islands (A) and for a localized barrier (B). The local
structure (see boxed region in A) is the same.

I1 ) (n1 + 1
2)h, I2 ) (n2 + 1

2)h

I′1 ) (n′1 + 1
2)h, I′2 ) (n′2 + 1

2)h (12)

H(I1, I2) ) H(I′1, I′2) (13)
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the two torus-localized states, which implies energy transfer (or
phase space flow) which is not present classically. The tunneling
will be accompanied by a splitting. A typical plot of energy
versus a parameter for the first few eigenstates of a two
dimensional anharmonic system is shown in Figure 9. This
Hamiltonian isH ) px

2/2 + py
2/2 + ωx

2x2/2 + ωy
2y2/2 + 0.2xy +

0.2x2y, and the parameterωx was varied, near the regionωy )
1.0, ωx ) 1.0, λ ) 0.1. Isolated avoided crossings are clearly
visible. Inspection of the eigenstates far from any crossing
displays clean and easily countable nodal structure correspond-
ing to classical motion with a given set of actions, but near an
isolated avoided crossing the eigenstates become confused
admixtures of two such states.7

A. Classical Resonance Analysis.We briefly outline the
classical resonance analysis, which provides several avenues
for dealing with the tunneling.

We can illustrate the situation starting with an integrable
single resonance Hamiltonian for two degrees of freedom.
Consider, following Ramachandran and Kay,18

whereν(θ1, θ2) is periodic in the angle variablesθi. The base
frequency is given by thhe parameterωi and the diagonal
anharmonicity is controlled byâi. The potential termsν(θ1, θ2)
can usefully be expanded as

where (n1, n2) are relatively prime numbers possessing no
common factors (a prime over the summation sign reminds us
of this). Then the functionsνn1,n2(n1θ1 - n2θ2) contain all the
(n1:n2) resonance interaction and are expanded as

so that the potential has the expansion

For example a 2:2 resonance zone would be induced byν1:1
((2).

Canonical transformation to new action-angle coordinates (J1,
J2, φ1, φ2) is accomplished via the generator

which gives

The Hamiltonian in the new coordinates is

whereω( ) (ω1 ( ω2)/2 andâ( ) (â1 ( â2). It is clear that
J2 is a constant of the motion becauseφ2 is absent inH. The
phase portrait in theJ1, φ1 plane for fixed energyE is shown in
Figure 10, top. A single 2:2 resonance zone is seen. Now
suppose the tori labeledA andB have exactly the same energy
at the primitive (EBK) level; i.e.,H(I1

A, I2
A) ) H(I1

B, I2
B) whereI1

A

Figure 9. Avoided crossings as a function of a parameter.H ) px
2/2

+ py
2/2 + ωx

2x2/2 + ωy
2y2/2 + 0.2xy + λx2y, and the parameterωx was

varied. The narrow avoided crossings are due to quantum tunneling;
at low energies, the classical dynamics is integrable.

Figure 10. A 4:3 resonance mediates the tunneling between theA )
(3/2, 11/2) torus and theB ) (9/2, 3/2) torus. The solid heavy line shows
the level curve of constant energy in action space; note that EA ) EB.
Somewhere in between points A and B will lie the actions whereω1/
ω2 ) -(∂H/∂I1)/(∂H/∂I2) ) -∂I2/∂I1|E; this is denoted by 4:3 and a
black dot. At this point on the level curve, the tangent is parallel to the
line drawn betweenA andB.

ν(θ1, θ2) ) ∑
p

∑
n1,n2

′

νn1,n2

(p) exp[ip(n1θ1 - n2θ2)] (18)

F(J, θ) ) 1
2
J1(θ1 - θ2) + 1

2
J2(θ1 + θ2) (19)

φ1 ) 1
2
(θ1 - θ2); φ2 ) 1

2
(θ1 + θ2) (20)

J1 ) (I1 - I2); J2 ) (I1 + I2)

H) ω-J1 + ω+J2 + â+J1
2 + â+J2

2 + 2â-J1J2 +
λ
2
(J2

2 - J1
2)ν1:1

(2) cos(4φ1) (21)

≡ H0 + λ
2
(J2

2 - J1
2)ν1:1

(2) cos(4φ1)

H(I , θ) ) ω1I1 + â1I1
2 + ω2I2 + â2I2

2 + λI1I2 ν(θ1, θ2) (14)

≡ H0 + V(I1, I2, θ1, θ2) (15)

ν(θ1, θ2) ) ∑
n1,n2

′

νnl,n2
(n1θ1 - n2θ2) (16)

νn1,n2
(n1θ1 - n2θ2) ) ∑

p

νn1,n2

(p) exp[ip(n1θ1 - n2θ2)] (17)
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) (n1
A + R1

A)h, etc., wheren1
A is an integer andR1

A arises from
the well-known Maslov phase corrections. The heavy dashed
lines to either side of the resonance zone are degenerate tori
which are EBK quantized. Dynamical tunneling is expected
between them. Even if the EBK energies differ, the states will
be mixed if the tunneling interaction is larger or on the order
of the EBK splitting.

We now demonstrate that the dynamical tunneling causing
the avoided crossing is once again a case of an above-barrier
reflection amenable to a perturbative treatment.

Suppose two states with quantum numbers (1,5) and (4,1)
are involved in an avoided crossing. The resonance zone appears
between the tori involved in the tunneling for the reason seen
in Figure 10. A 4:3 resonance mediates the tunneling between
theA torus with actions (1+1/2, 5+1/2) ) (3/2,11/2) and theB
torus with actions (9/2, 3/2). The heavy line delineates the level
curve of constant energy in action space; note thatEA ) EB.
By the mean value theorem, somewhere in between pointsA
andB must lie actions where the slopeSof the constant energy
curve is equal to the slope of the line connecting the two sets
of actions.

this is denoted by 4:3 and a black dot. At this point on the
level curve, the tangent is parallel to the line drawn between A
and B.

S ) -4/3 corresponds to the zone in classical phase space
where the resonance (4:3 in this example) exists. In this way
we can always find an appropriate resonance zone which will
connect two tori by over-the-barrier dynamical tunneling.

Even if the quantum numbers of the states involved in the
avoided crossing are very different, say differing byn quanta
in action I1 and m quanta inI2, there is in general an n:m
classical resonance island chain lying between the tori corre-
sponding to the states which is the agent of the quantum
tunneling. In a generic coupled but nearly integrable phase space,
an island chain will exist for every rational winding number.
In this sense classical phase space structures are the cause even
of very narrow avoided crossings between states of very different
character.

B. Calculation of the Tunneling Interaction. There are
several ways to calculate the tunneling between the tori caused
by the intervening resonance zone. They all begin with a
resonance analysis as just described. In two closely related
approaches one gets the tunneling by stopping short of the fully
semiclassical analysis, substituting a little quantum mechanics
into the one dimensional effective Hamiltonian produced by the
resonance analysis. This produces a “uniform” approximation;
in essence one is doing full quantum mechanics on a classically
pre-processed Hamiltonian. One approach quantizes the (J1, φ1)
Hamiltonian for fixedJ2 with the AnsatzJ1 f -ipd/dφ1 + p.15,16

The resulting Schro¨dinger equation is then solved numerically,
or analytically if possible. The pendulum-like Hamiltonian 21
contains the nonclassical below barrier tunneling (and above
barrier reflection). A closely related scheme uses the Heisenberg
(matrix) formulation of quantum mechanics by finding matrix
elements of the resonant interaction term and diagonalizing.
Bohr correspondence in invoked in the following way: the
resonant term depends on both actions and angles of the
nonresonant part of the Hamiltonian, as in eq 14. The actions
appearing in the resonant term are set to their mean values (Jh1,
Jh2) and the off-diagonal tunneling matrix element becomes

with Jh1 ) (J1 + J′1)/2, etc. The method is uniform since the
matrix of EBK diagonal energies and off-diagonal couplings is
numerically diagonalized. An example of the use of a procedure
much like that just described is found in Roberts and Jaffe.17

C. Spectra and IVR Implications. It has been suggested
that the weak tunneling interactions discussed here have
profound effects on IVR and may even be one of the main
agents of IVR.7,22The idea is that an unperturbed quantum state
with zeroth order quantum numbers (I1, I2, ...,), adhering to a
classical torus with those actions, is weakly coupled to a dense
set of states with very similar energy and various actions. A
study of the analytic properties of the matrix elements, eq 24,
suggests it is reasonable to take the typical matrix element to
scale asV ∼ exp[-γ|∆I|] whereV is the matrix element,γ is
a proportionality factor, and∆I is the total change of action in
going form one state to another.

Suppose we start in the initial state with quantum numbers

where there areL modes listed. Suppose the first, occupied mode
with P quanta in it has a frequency “typical” of the other modes,
which have a narrow spread of frequencies. Then it generates
a set of tiers which differ in the number of quanta removed
from the first mode and distributed around the others, where
the total number of quanta is constant.

The density of states withQ quanta distributed among (L -
1) modes varying over some finite range of frequencies with
small anharmonicity goes as

This grows almost geometrically, so there will be a competition
in the rate expression between the exponential decrease of the
matrix elements and the exponential increase in the density of
states, as tiers with greater action differences are considered.
The outcome of the competition determines whether or not states
are globally mixed into a sea of quasidegenerate states. If so,
the character of the the initial state will fractionate into a
quasidegenerate range of states whose width is given by the
initial Golden Rule decay time. Measures have been developed
which gauge the degree of mixing of unperturbed states into
the eligible eigenstates.27 The result of such fractionation has
been seen experimentally and may be evidence for the tunneling
mechanism given here. The effect on the spectrum of the
tunneling interaction is shown schematically Figure 11; this kind
of spectrum, with a 0.1 to 0.01 cm-1 bandwidth, has been seen
in several medium sized molecules (such as propyne) at
moderate energy (a few thousand wavenumbers).24-26

IV. Tunneling between Born-Oppenheimer Surfaces

So far we have concentrated on forbidden processes which,
when properly analyzed, reduce to tunneling across a separatrix.
We move now to a different situation, one involving an even
more common circumstance in chemical physics: hopping
between potential energy surfaces.

-S) ω1/ω2 ) -
∂H/∂I1

∂H/∂I2
) -

∂I2

∂I1
|E (22)

〈J1, J2|H|J′1, J′2〉 (23)

) 1

(2π)2 ∫∫eip(n1θ1-n2θ2)V(Jh1, Jh2, θ1, θ2) dθ1 dθ2

≡ V(Jh1, Jh2)n1,n2

(p) (24)

(P, 0, 0.‚‚‚, 0) (25)

FQ )
exp[µQ]

xQ
(26)
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A. Radiative Example: Classical and Tunneling Regimes.
Both radiative and radiationless transitions depend on the overlap
of vibrational states coupled by a weak perturbation. In the
radiative case this coupling is the transition moment which is a
function of the nuclear coordinates (after integrating over the
electronic coordinates). In the radiationless case, the coupling
is due to the nonadiabatic terms in the Hamiltonian, which again
are functions of the nuclear coordinates. Given these similarities,
it is useful to raise (lower) the initial Born-Oppenheimer surface
by pω whereω is the frequency of the absorbed (emitted) light,
and treat the radiative process much like a radiationless one.

Consider the absorption spectrum for a bound state going to
a steep part of an excited electronic state as shown in Figure
12. As the incident light frequency is increased, we proceed
from the “red” wing, through the band center, to the “blue”
wing. Drawing a horizontal line between the two classical
turning points of the “donor” or initial surface defines the
classically allowed region of the donor wavefunction. At first

the intersection of the surfaces occurs to the right of the
classically allowed region, then within it, and finally to the left
of it asω is increased. Representative diagrams of the overlap
of the two vibrational states are given in each of the three re-
gions. When the surfaces cross in the classically allowed region,
the overlap is good and the spectrum is near its maximum. When
they cross outside the classically allowed region, the overlap is
poor and corresponds to the nonclassical wings. This distinction
extends to any number of dimensions, and defines the concept
of the “nonclassical” region of Franck-Condon factors.

The issue is identical for radiationless transitions, except that
one cannot lift the potential energy surfaces relative to each
other (except for very small adjustments with external fields).
Thus, the radiationless transition case is “stuck” at one value
of the vertical displacement. Quite often, this value places the
system in question in the nonclassical regime (as is the case
for benzene during an electronic transition from theS1 surface
to the lowest singletT1 surface), and once again from there to
S0.

Nonclassical Franck-Condon factors are necessarily small,
since either the amplitudes or the nodal structures (or both) of
the two wave functions are incompatible. In the red wing, only
the tails of the wavefunctions overlap; the integral is clearly
small. This is shown in Figure 12, bottom. In the classical region,
the amplitudes and nodes are compatible, and the overlap is
large. In the blue wing, the nodes in one of the eigenstates kill
the overlap even though the amplitude is fairly large for both
states over a portion of coordinate space (Figure 12, top).

However, there is a subtle point about the blue wing Franck-
Condon factors. There are two possibilities for interpreting their
residual value. Either the residual results from an incomplete
nodal cancelation in the region of large amplitude or it could
come from the overlapping region of the tails of the two states,
which after all still contribute. While this distinction may seem
academic, we shall see that it leads to important effects in two
or more dimensions.

B. Semiclassical Franck-Condon Factors. A traditional
perspective on Franck-Condon factors is suggestive about
tunneling between potential energy surfaces. Semiclassical
eigenstates may be represented as a sum of terms of the form

A Franck-Condon overlap between two such states, each on
its own Born-Oppenheimer potential energy surface, is

The stationary phase evaluation of this integral requires

or

which implies, since the total energy is the same on both
potential energy surfaces,

Figure 11. A fractionated spectrum of a zeroth-order state which,
without the tunneling, would have been a single peak. The energies of
the eigenstates are given as tic marks.

Figure 12. If the frequency of the radiation is too high or too low, the
surface raised bypω fails to intersect the second surface in the
classically allowed region, leading to a tunneling process requiring a
position or momentum jump, and corresponding to the weaker “tails”
or wings of the absorption spectrum.

ψ(x) ≈ 1

|p(x)|1/2
exp(i∫p(x′)dx′+iν) (27)

〈ψA|ψD〉 ∼ ∫ 1

|pA(x)|1/2|pD(x)|1/2

exp(-i∫x
pA(x′)dx′+i∫x

pD(x′)dx′) dx (28)

d
dx

(-∫xpA(x′) dx′ + ∫xpD(x′) dx′) ) 0 (29)

pA(x) ) pD(x) (30)

VA(x) ) VD(x) (31)
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This is the well-known result that the semiclassical contribution
arises where potential energy surfaces cross. There may of
course be more than one stationary phase point; in what follows,
we shall assume we are dealing with the dominant contribution.

There are two possibilities for a crossing in the nonclassical
regime. If it occurs at a real value ofx†, then the position of
the crossing is real and the momentum at the crossing,pA(x†)
) pD(x†) is pure imaginary. (Real momentum and real position
correspond to the classical regime where no “jumping” is
required). This is the case of a position jump, where the
contribution to the integral is coming from the tails of the
wavefunctions. BothpA(x†) and pA(x†)* are stationary phase
points, but one of them corresponds to exponentially increasing
wavefunction and is discarded.

The crossing may however be at complex values ofx. The
momentum will no longer be purely imaginary, but will
generally be complex. It often happens that the position ismostly
imaginary, and the corresponding momentum is mostly real,
giving a jump which is largely in momentum. If the crossing
happens atp ) p†, it also must occur for opposite signp )
-p†. For pure imaginary momentum this is the same asp†*,
but generally there are four stationary phase momenta. Two give
rise to increasing rather than decreasing wave functions in the
classically forbidden region and are discarded, leaving two
remaining. There may be constructive or destructive interference
between these distinct but equal magnitude stationary phase
amplitudes,6,32 and if the resulting oscillations are seen it is a
sign that momentum tunneling is taking place.

These considerations apply even if the initial state is the
ground state, which is seemingly a dubious candidate for
semiclassical approximation. However, we are using the semi-
classical form usually deeply within classically forbidden region.
As pointed out long ago by Miller,13 semiclassical approxima-
tions should work well so long as the absolute value of the
momentum is large enough. At a more exact level, we note the
work of Nikitin31 which builds on the work of Landau and
Lifschitz,10 demonstrating how semiclassical matrix elements
involving even the ground vibrational state may be quite
accurate.

The stationary phase evaluation of eq 28 also yields a
prefactor. SincepA(x†) ) pD(x†), and

we have

where ∆F is the difference in force experienced on the two
surfaces at the crossing point, and the sum is over stationary
phase points. The square of this is

where we have included a factor ofε to cover the overall
electronic prefactor to the overlap integral. This is the Landau-
Zener formula, here written usingp⊥, which is the momentum
component perpendicular to the surface crossing in more than
one dimension.

This formula is proportional to the area of intersection (black)
of the two phase space curves, or alternately to the van Vleck

determinantal prefactor for the stationary phase version of the
integral (Figure 13).28

C. Franck-Condon Factors for Forbidden Processes.We
are interested primarily in the classically forbidden situation,
where the Born-Oppenheimer surfaces do not cross in the
classically allowed region, or when they do not cross at all, for
real values of the coordinates. An enormous range of phenomena
may be cast as tunneling between adiabatic potential energy
surfaces. To name a few: slow radiationless transitions,
photoabsorption in the wings of a band, predissociation of van
der Waals molecules, slow charge transfer, and slow excitation
transfer.

In Figure 14 we see a system which must tunnel, portrayed
in coordinate and in phase space. From the phase space picture
it is irresistible to suppose that in some sense the wavefunction
the upper bounded potential curve (the inner curve in phase
space) wants to jump to the other phase space track by hopping
partly in position and partly in momentum along the path shown
(arrows); this point of view was strongly reinforced in ref 29.
For other points of view see also refs 10, 30-32.

The fascination with the tunneling case hinges on the strange
possible outcomes of the the radiative or radiationless transition
which the Franck-Condon factors describe. The really interest-
ing cases involve deep tunneling in several degrees of freedom.
Such events are commonplace in photochemistry, and much
more could be done along these lines experimentally using
control available in photoabsorption.

We develop a picture which is much simpler to visualize than
the complex root solutions of eqs 30 and 31.29,33,34 Consider
the Golden Rule expression for the rate of the electronic
transition,

∂
2∫xp(x′) dx′

∂x2
)

∂p(x)
∂x

∼ F(x)/p(x)

〈ψA|ψD〉 ∼ ∑ 1
p(x)

p(x)1/2

|∆F|1/2
(32)

P ∼ 2πεm
pp⊥|∆F| (33)

Figure 13. Phase space and coordinate space views of a Franck-
Condon factor for two vibrational levels given by two Born-
Oppenheimer potential energy surfaces crossing in the classically
allowed region. In the black shaded regions of overlap in phase space
the system may jump the track, so to speak, without change of position
or momentum. Note the coordinate space region where both functions
oscillate at the same rate; this is a region of stationary phase of the
integral for the Franck-Condon factor, and coincides with the
coordinate space location of the crossing in phase space.
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whereF(E0) is the density of states at energyE0, and〈V2〉 is the
mean-square matrix element. Making the Condon approxima-
tion, we write this as

where |d〉 is the donor wavefunction,V0
2 is the constant

coupling strength, andFd ) |d〉〈d| is the density matrix for the
donor wave function. We simplify this further here by ap-
proximating eq 35 as

The approximate expression 36 gives the ratek as proportional
to the integral of the Wigner density of the donor,Fd

W(pb, qb),
over the classical energy hypersurfaceδ[E0 - Ha(pb, qb)] of the
acceptor. We ask: where on the acceptor energy surface does
the bulk of the rate integral come from? This is a matter of
investigating theintegrandof eq 36. We are treating the donor
and acceptor wavefunctions differently. The donor is given a
full fledged Wigner density, the acceptor is treated as a classical
energy hypersurface.

By studying the phase space structure of the donor wave-
function and the energy hypersurface of the acceptor Hamilto-
nian, we learn where amplitude appears on the acceptor potential
energy surface. The ratek is proportional to the average Franck-
Condon factor; it is a non-state specific quantity. By interpreting

the integrand of eq 36, we are putting back the specificity in a
very useful way, by saying where (and with what velocity) the
amplitude appears on the acceptor surface.

Considered as a Wigner phase space distribution, the donor
wavefunction is a smooth distribution peaked at zero momen-
tum. In coordinate space it is peaked at the minimum of the
donor potential energy surface. The bulk of such a phase space
densityhas too low an energyon theacceptorpotential energy
surface to be germane to the donorf acceptor transition. The
transition has to be quasi-degenerate with the energy of the
donor state, which is high, due to its stored electronic energy.
To find the relevant regions in phase space we must examine
those parts of the “tail” of the Wigner density that have sufficient
energy on the acceptor potential energy surface. This is the
content of eq 36.

We start with a one dimensional system in Figure 15. Two
cases are seen corresponding to blue wing absorption (or red
wing emission). The wave functions are shown on the left; on
the right, the phase space pictures. The Wigner phase space
distribution for the donor state is a smeared distribution, and
the quasidegenerate contour interval on the acceptor potential
energy surface is the parabolic curve. In the top case, the donor
wavefunction is narrow, so the oscillations of the acceptor wave
function do not completely kill the integral. Furthermore, the
tail of the donor wavefunction is very small near the tail of the
acceptor wavefunction. There is no doubt that the overlap comes
from the region where the donor wavefunction is large. This is
a momentum jump case, because the amplitude leaving the
donor wavefunction may be thought of as appearing near the
maximum of the donor wave function, with considerable
momentum on the repulsive acceptor potential. The phase space
picture reflects the increased momentum uncertainty and
decreased position uncertainty associated with the narrow

Figure 14. Phase space and coordinate space views of a Franck-
Condon factor for two vibrational levels given by two Born-
Oppenheimer potential energy surfaces crossing in the classically
forbidden region. Nowhere do the wave functions on the respective
surface oscillate alike, nor is there a stationary phase point for real
coordinates.

Figure 15. Phase space view giving the Wigner distribution of the
initial state and the phase space track of the final state. Depending on
the position and momentum uncertainty in the initial state, the tunneling
proceeds by position jumping or combination momentum-position
jumping.

k ) 2π
p

〈V2〉F(E0) (34)

k) 2π
p

V0
2 Tr[δ(E0 - Ha)|d〉〈d|]

≡ 2π
p

V0
2 Tr[δ(E0 - Ha)Fd] (35)

k ≈ 2π
p

V0
2 ∫ dpbdqb δ[(E0 - Ha(pb,qb))] Fd

W(pb,qb) (36)
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coordinate space distribution. Clearly a shift in momentum at
(nearly) constant position gives the shortest path between the
two distributions.

At the bottom in Figure 15 we see a much wider donor
wavefunction, centered as in the previous case. A glance at the
wave function plots shows there is now good overlap of the
tails, and more nearly complete cancellation of the integral in
the oscillatory region. The integral is coming mostly from the
region of the tails, and the phase space plot demonstrates that
a position jump (again at zero momentum) gives the shortest
path between the two states.

We have just seen that position jumps and momentum jumps
can compete to be the major contribution to the Franck-Condon
integral in the nonclassical regime. In several dimensions, each
position and each momentum become competitors. The winning
coordinates can be quite surprising. Thus, for nonclassical
transitions, the usual Franck-Condon propensity rules can be
very misleading. For example, the mode with the largest
equilibrium position displacement need not be excited in a
nonclassical Franck-Condon transition in the wings.

In several dimensions, each coordinate and its conjugate
momentum becomes a candidate for the location of the “leak”.
Once again we seek the location in phase space on the final
potential’s energy hypersurface when the Wigner density of the
initial state is largest. As the tunneling gets deeper, this place
becomes harder to guess from the obvious features of the two
potential energy surfaces. For example, if the “donor” surface
is displaced mostly in a coordinatex compared to the acceptor
surface, we would normally expect thex-coordinate to be
involved in the leaky region. Indeed this will be the case for
not too deep tunneling, as happens if the distance between the
surfaces is not too great. However, as the tunneling gets deeper,
other effects tend to dominate, such as the size and differences
in force constants on the two surfaces.

An important and illustrative example which is well under-
stood from the usual Franck-Condon perspective involves two
surfaces with a moderate displacement in a moderate frequency
normal modea together with a small displacement in a high
frequency modeb. The Franck-Condon factors are (in the
separable limit) products of one dimensional Franck-Condon
factors; in this case

where the requirement of quasi-degeneracyEna + Emb ≈ E0h0h is
enforced. The bar indicates a state on the initial donor potential
energy surface. The issue of where the leak is has been addressed
before: which termFnm dominates in the average appearing in
the Golden rule expression

Note that whatever the answer to this question, it is much less
specific than our phase space leak formulation, since the winning
state|namb〉 is itself potentially rather extended in phase space.
If there is truth to the notion that a small region of phase space
dominates, it would concomittantly imply that other states
|n′am′b) would also have to have substantial overlap.

Figure 16 illustrates the tunneling question for two displaced
Born-Oppenheimer surfaces. Will the wavefunction leal onto
the lower surface by a position jump, or a momentum jump, or
some combination, and in which coordinates?

Reference 35 was concerned mainly with radiationless rates
as a function of excess vibrational energy, in the tunneling

regime. An intriguing aspect of this work was that the departure
points for the tunneling paths in position space were the corner
caustics, in the case that the motion was integrable on the initial
surface. Here, we focus with the overlaps as a function of
electronic energy (or the “energy gap”), as well as other features
of the participating Born-Oppenheimer potential energy sur-
faces. The earlier work considered only what we shall refer to
here as position jump (as opposed to momentum jump)
nonclassical transitions.

V. Dissociative Tunneling of a van der Waals Cluster

A final example raises an interesting question: can we treat
some systems by either approach, i.e. two surface Born-
Oppenheimer or resonance zone induced dynamical tunneling?
Clearly, there is a common element, which deserves more
attention than we can give it here: the idea of slowness of one
or more coordinates. In Born-Oppenheimer, it is the essence
of the approach, and in the resonance analysis, one goes over
to a slow angle, which might be viewed alternately as an
adiabatic coordinate. Are the two approaches really the same?
Certainly not in the details.

In a van der Waals complex undergoing vibrational predis-
sociation, one could treat the fast vibration as the “electronic”
degree of freedom, and the van der Waals bond (usually much
lower frequency) as the slow coordinate. So the Born-
Oppenheimer approximation applies. On the other hand, a
classical resonance analysis also would apply, based on action-
angle variables as outlined above.

Finally, there is a third alternative, one we have been avoiding
so far: perturbation theory based on an uncoupledH0. This was
Ewing’s perspective,30 and it is qualitatively very successful.
The generalization outlined in this paper shows that there is no
need to be in the perturbative regime, for the weak tunneling
interactions we have been discussing to apply. This would allow
a classical trajectory analysis on a fully coupled potential energy
surface followed by identification of resonance islands, with a
final perturbation expression based not on uncoupled degrees
of freedom but rather on the full action angle variables for the
system.

VI. Conclusion

We have concentrated on dynamical tunneling in the first
part of this paper, and on Born-Oppenheimer surface-to-surface
tunneling in the second part. Many of our examples are not

Fnm ) 〈0ha|na〉〈0hb|mb) (37)

k ∝ 2π
p

< Fnm
2 > F (38)

Figure 16. Matters get really interesting when for nested potential
energy surfaces in several dimensions a competition is set up to
determine which position or momentum coordinate, or combination
coordinate, is the location of the “leak” between the two surfaces.
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traditionally conceived of in terms of tunneling, but are usefully
and properly understood this way.

Dynamical tunneling, we conjecture, may often be the
mysterious agent of IVR which experimentalists speak about.
Over the years, we have found that a useful definition of IVR
is whatever experimentalists do not understand or cannot assign,
leading to decay, fractionation of spectra, etc. Thus, when certain
spectral features are explained theoretically in terms specific
mode-to-mode coupling, occurring resonantly and in an orderly
way, this isnotconsidered to be IVR, much to the consternation
of the theorist! But experimentalists have good reason for this.
IVR is a rolling concept: we can define zero order states which
involve a limited number of degrees of freedom and which
incorporate all the above mentioned resonant coupling. These
zero order states now may decay on a much longer time scale,
and for less well understood reasons, leading to fractionated
spectra with total bandwidths as small as 0.01 cm-1. This is
IVR, and we suggest it may be due to dynamical tunneling.5,7

Born-Oppenheimer surface-to-surface tunneling is the main
actor in a large sector of chemistry and chemical physics. Much
of the time, surface-to-surface amplitude transfer is classically
allowed, perhaps through thermal activation. This situation
yields to surface hopping approximations at the classically
allowed surface intersections, and is much better understood
and classified.36

Photochemistry, especially on the regime of high quantum
yield (slow radiationless decay), photoabsorption and photo-
emission in the far wings of spectroscopic bands, vibrational
predissociation, and nonresonant electron transfer are important
examples of the tunneling regime of Born-Oppenheimer po-
tential energy surface coupling. Just as the study of molecular
vibrations and rotations has extended beyond the realm of
normal modes and assignable spectra to nonlinear dynamics and
even chaos, so too should the study of intersystem crossing,
internal conversion, electron transfer, etc., embrace modern
dynamical concepts
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